Research Workflows

Module title						Re	esearch v	vorkflows				
Modul	Module NFQ level (only if an NFQ level can be demonstrated)											
Module number/reference												
Semest	ter (semester1/sei	nester2	if applicable)									
Modul	e credit units (FF	ст/нет	/ECTS)									
Modul	e credit number	of units										
Modul	e Status [Mandat	tory (M)/Elective (E)]									
List th	e teaching and le	arning	modes			Le sel	ectures, T	utorials, ar d learning	nd Practical s (includes rea	sessi ding	ons u g and	sing study)
Entry	requirements (sta tence)	atement	of knowledge, ski	ill and	l	Int	ternal to t	he program	nme		-	• /
Pre-ree	quisite module tit	tles						10				
Co-req	uisite module tit	les										
Is this	a capstone modu	le? (Ye	s or No)									
Staff qualifications and experience required						Academic and research staff, persons with OS, RDM Experience lecturing in the field.						
Staff/st	tudent ratio per o	centre (or module instanc	e)								
Maxim	um number of st	tudents	per centre (or mo	dule i	nstance)							
Physic: instanc	al resources and ce)	suppor	required per cen	tre (o	r module	TrainRDM platform, Moodle access and support, library access						
TIPP (1.1.	• • • •	00	Analy	ysis of required	l lear	rning effort					
Effort while in contact with staff Classroom and demonstrations Mentoring and small- group tutoring		Practical Work		Directed e- learning (hours)	Independer learning (hours)	tt Other hours (Protected Study Time)	Wo ba lear hou lear eff	ork- sed ning rs of ning fort	Total effort (hours)			
Hours	Minimum ratio teacher/student	Hours	Minimum ratio teacher/student	Hour	rs Minimum ra teacher/stud	atio lent						
4.11	· · · · · ·											
Allocation of marks (within the mo		<u>Continuous</u> assessment		Supervised project		Proctore exam	d practical ination	Proctored wri examination	tten n	r	Fotal	
Percentage contribution												

TrainRDM Programme

In drafting the content of the TrainRDM programme, we started with "An overview on Open Science" describing the eight pillars of Open Science identified by the European Commission¹ and used by LERU² in their advice paper on Open Science (OS) and the role of universities "A Roadmap of cultural change".

The analysis was followed by a survey of all partners and relevant stakeholders for OS-RDM and topics of interest for TrainRDM. Building upon the Survey results, i.e. the skills needed and suggested by the researchers and the competencies possessed by the differentTrainRDMpartners, it is suggested to develop and, eventually, deliver a full pan-European programme in (Research) Data Management. While the creation of suchprogramme is a long-term aspiration, theTrainRDM will endeavour to develop more training paths (e.g. summer school) that could offer ECTS and/or other certificates such as open badges.

These materials will be used to develop the content of the TrainRDM skills training programme (and its modules) based on the structure proposed by the TraiRDM Toolkit.

Fig.1. 90-credit Pillar MSc in Research Data Management: Proposed Structure.

As detailed in the structure, the 15-credit modules are to be offered by the four HEI members of the TrainRDM Consortium, namely TUW, UPB (with support from ICI), NCI, and Sapienza, and it is planned to also offer the modules as micro-credentials. The 30-credit capstone project will be proposed linked to case studies under the supervision of ICI and DTSL with help from the TrainRDM's HEIs. The entire programme will have a flexible route with joint delivery, leading to a single award. It is duly noted that in European countries, MSc programmes *have typically 120 credits*. As such, there are two elective modules added to cover the additional credits required: "Text and Data Mining" (NCI) and "*Research workflows*" (ICI).

¹ Collected from European Commission – Open Science: <u>https://ec.europa.eu/research/openscience/index.cfm</u>; last accessed 2 May 2018.

² League of European Research Universities

1.1. Research Workflows Module Objectives

The module aims to enable learners to understand, discuss, and summarise Research Workflows and Methodologies from an Open Science perspective, providing a concrete context as well as the key points for the most relevant aspects of adopting Open Science as a karma in daily activities related to doing Research and Innovation. Starting from the core concepts and principles of Research Methodology steps, the topics covered by this module continue to address components such as Planning and Designing a Research Study, Data Collection, Assessment Methods and Measurement Strategies, Research Designs and Approaches, Data Preparation, Analysis and Interpretation, Ethical Considerations in Research and Disseminating Research Results. We reiterate that all these topics are approached from an Open Science perspective, meaning the accent leans towards the appropriate use (collect, store, make available) of Open Data, the research data strategies to be followed, publication of results following strict Open Access principles and many others.

The purposes of this Module is, therefore, to discuss the various types of OS research designs that are commonly employed and proposed by different initiatives, the basic process by which research studies are conducted, the OS research-related considerations of which researchers should be aware, the OA manner in which the results of research can be interpreted and disseminated, and the typical pitfalls faced by researchers when designing and conducting an OS research study.

1.2. Intended Module Learning Outcomes

This Module is ideal for those readers with minimal knowledge of research as well as for those readers with intermediate knowledge who need a quick refresher regarding particular OS aspects of research design and methodology. For those readers with an advanced knowledge of research design and methodology, the Module can be used in understanding the differentiators when it comes to conduct an appropriate OS research methodology, and maybe also as a concise summary of basic research techniques and principles. Finally, even for those learners who do not conduct research, this Module can become a valuable addition because it will assist them in becoming more educated consumers of research, to understand the implications of Open Science for research. Being able to evaluate the appropriateness of an OS research design or the conclusions drawn from a particular research study will become increasingly more important as research becomes more accessible to non-scientists (librarians for example). In that regard, this Module will improve the ability to digest and understand the results of a research study and make everyone critical when it comes to OA/OS efficiently and effectively.

Upon successful completion of this module, learners will be able to:

- 1. Understand the social, economic, legal, and ethical principles and concepts underpinning Open Science Research Methodologies.
- 2. Understand the relevant elements of Open Data and FAIR principles in applied research methodologies.
- 3. Demonstrate in-depth knowledge Demonstrate in-depth knowledge of the arguments for and against the inclusion of Open Data in any research methodology.
- 4. Evaluate and assess software sharing under the most appropriate license (i.e., both the tools and the licensing) when thinking in terms of a research methodology.
- 5. Understand the necessity of reproducible research and its reasoning.

6. Knowledge to use existing resources to choose an appropriate license for written research work, based on the desired freedom/limitation for others to use/reuse.

1.3. Rationale of the Learning Module

Open Science (OS), the movement to make scientific products and processes accessible to and reusable by all, is about culture and knowledge as much as it is about technologies and services. Convincing researchers of the benefits of changing their practices and equipping them with the skills and knowledge needed to do so, is hence an important task.

Quite frequently these days people talk of OS, both in academic institutions and outside. But many times, when people talk about OS they tend to think of the research implications (e.g. the possibility to publish results in Open Access journals, having access to Open Data), and little attention is paid to an important dimension relating to research, namely, that of Research Methodology. The result is that much of OS research, particularly in engineering, contains endless word-spinning and too many quotations. Thus, a great deal of research tends to be futile. It may be noted, in the context of planning and development, that the significance of research lies in its quality and not in quantity. The need, therefore, is for those concerned with research to pay due attention to designing and adhering to the appropriate methodology throughout for improving the quality of research (and, by implication, of the results obtained). The methodology may differ from the traditional ones (e.g., we need to think in terms of using the right Open Data whenever possible, but also to properly evaluate the Quality of that data and address the specific meta-data describing experimental conditions), even if the basic approach towards research remains the same.

Keeping all this in view, the present Module has two clear objectives, viz., (i) to enable researchers, irrespective of their discipline, in developing the most appropriate OS methodology for their research studies; and (ii) to make them familiar with the art of using different OS research methods and techniques.

In relation to the Minimum Intended Programme Learning Outcomes (MIPLOs), the **Open Science** module specifically contributes to the following MIPLOs:

MIPLO1	Conduct independent research and analysis in the field of Open Science.
MIPLO2	Demonstrate expert knowledge of Open Science.
MIPLO3s	Develop and implement effective business & technical solutions for Open Science.

1.4. Module Content organisation and structure

An indicative schedule of topics to be addressed is outlined below:

- 1. Planning and Designing an OS Research Study
- 2. Finding the right Open Data
- 3. Open Data Collection, Assessment Methods, and Measurement Strategies
- 4. OS Research Designs and Approaches

- 5. Sampling Design
- 6. Measurement and Scaling Techniques
- 7. Instruments to share Data in Research Methodologies
- 8. Preparation, Analysis and Processing of Data
- 9. Data Interpretation and Hypothesis Testing
- 10. Multivariate Analysis Techniques based on Data Provenance
- 11. Ethical Considerations in OS Research
- 12. OA Disseminating Research Results and Distilling Principles of Research Design and Methodology

The mapping between topics and classes is:

ID	Course Title	Торіс		
		Planning and Designing an OS Research Study		
Course L(5 ECTS)	Research Data	Open Data Collection, Assessment Methods,		
Course I (5 EC 15)	Methodologies	and Measurement Strategies		
		OS Research Designs and Approaches		
		Finding the right Open Data		
Course II (5 ECTS)	Data Collection	Sampling Design		
Course II (5 LC 15)		Instruments to share Data in Research		
		Methodologies		
		Measurement and Scaling Techniques		
Course III (5 ECTS)	Data Analysis	Preparation, Analysis and Processing of Data		
		Data Interpretation and Hypothesis Testing		
		Multivariate Analysis Techniques based on Data		
		Provenance		
Course IV (5 ECTS)	Data Validation	Ethical Considerations in OS Research		
Course IV (5 LCIS)		OA Disseminating Research Results and		
		Distilling Principles of Research Design and		
		Methodology		

The organisation of the courses is the following:

	Course title	EC ST	Hours per week		No.	No. Total no. of hours			Indivi	Form of			
N 0.			Lect ures	Applic ations	Pro ject	Rese arch	of we eks	Lect ures	Applic ations	Pro ject	Rese arch	dual study hours	verificatio n
1	Research Data Methodologies	<mark>2</mark>	2	-	2		14	28	-	28	-	69	Exam
2	Data Collection	2	2	-	2		14	28	-	28	-	69	Exam
3	Data Analysis	2	2	-	2		14	28	-	28	-	69	Verificatio n
4	Data Validation	2	2	-	2		14	28	-	28	-	69	Exam
5	Research&Practi ce	7	-	-	-	12	14	0	-	-	168	82	MSc Colloquyi um
	No. of hours per week per activity	15	8	0	8	12	14						

	Lecture Topic	Lecture Detail	Practices (examples)			
1.	Planning and Designing an OS Research Study	Open Science definition Research Study definition Research Topics Research Problem Research Design	Questions, obstacles, and common misconceptions Exercise: - Choose a Research Topic - Formulate a Research Problem - Choose variables to study			
		 Learning objectives: Understand the social, economic, legal, and ethical principles and concepts underpinning Open Science Research Methodologies. Become familiar with the research-related issues that need to be considered during the Planning and Designing stages. Gain an understanding of the basic steps in Planning and Designing an OS Research Study. 				
2.	Finding the right Open Data	Open access Instruments to collect Open Data - Content analysis - Questionnaires - Interviews Open Access research infrastructures	 Example exercises: Identify new sources of Open Data Choose the right instrument to collect Open Data in a given study 			
		Learning objectives:1. Learn about Open access2. Identifying Open Data sources3. Proper use of various Open Data collection	tion tools			
3.	Open Data Collection, Assessment Methods, and Measurement Strategies	Open Data definition Methods of Data Collection Assessment Methods Measurement Strategies - Measurement - Scales of Measurement - Scaling Techniques - Research principles for open research	 Explore different methods of Open Data Collection, Assessment Methods and Measurement Strategies Exercise: Identify the Methods of Data Collection Choose the right Assessment Method Choose the right Measurement Strategy 			
		 Learning objectives: Gain an understanding of arguments for and against the inclusion of Open Data in any research methodology. Gain an understanding of the Methods of Data Collection. 				

The definition of he covered topics is the following:

	Lecture Topic	Lecture Detail	Practices (examples)
		 Learn about the different options a rese Assessment Methods and Measurement Understand the importance of appropria Measurement Strategies to use. 	archer has when deciding what t Strategies to use. ate Assessment Methods and
4.	OS Research Designs and Approaches	 Types of experimental validity and the potential threats (sources of artifact and bias) associated with each Approaches for controlling artifact and bias General Types of Research Designs and Approaches Experimental Designs Quasi-Experimental Designs Nonexperimental or Qualitative Designs 	 Explore different OS Research Designs and Approaches Exercises: Choose approaches for controlling artifact and bias Choose Research Designs and Approaches
		 Learning objectives: Understand the potential threats for des controlling artifact and bias. Gain an understanding of the General T Approaches. Understand the importance of appropriate 	ign and the approaches for Types of Research Designs and ate type of design.
5.	Sampling Design	Implications of a sample design Steps in sample design Criteria of selecting a sampling procedure Characteristics of a good sample design Types of sample designs Random sample	 Example exercises: How to select a random sample? Choosing the appropriate sampling design
		 Learning objectives: Understanding the importance and imp Learn about the different steps in samp Using different criteria of selecting a sa Differentiation of several types of samp 	lications of a sample design; le design; unpling procedure; pling design.
6.	Measurement and Scaling Techniques	Measurement in Research Measurement Scales Sources of Error in Measurement Assessing Data Provenance and Quality Tests of Sound Measurement Scaling and Meaning of Scaling Scale Classification Bases and Transformations	 Questions, obstacles, and common misconceptions related to data measurements Example exercises: Assess the data quality from a random Open Dataset Collection Work with the data in order to obtain significant scale transformations (e.g.

	Lecture Topic	Lecture Detail	Practices (examples)					
		Important Scaling Techniques	understand units of					
		Scale Construction Techniques	measure)					
		Learning objectives:						
		- Understand the right workflows for me	asuring and working with scales					
		 when looking at data Understand the implications of working with Open Data in research methodologies 						
		Assess the data quality, provenance, granularity and transformations						
7.	Instruments to	Why share research data?	Example exercises:					
	share Data in Research	How to share your data?	- SWOT Analysis of data					
	Methodologies	Journals and data sharing	sharing in research Finding new research data					
		Research data centres	centres					
		Learning objectives:						
		1. Understanding the advantages of sharing research data						
		 Learn about various ways to share research data Identification of research data centres in accordance with the field of 						
		research						
8.	Preparation,	Preparing data for analysis						
	Processing of Data	- Logging and Tracking Data	Questions, obstacles, and					
	U	- Selecting an Open Data source	common misconceptions					
		- Transforming data	and analysis from Open					
		- Elements/Types of Analysis	Colletions					
		- Statistics in Research	Example exercises:					
		Data Analysis	- Select a random open data					
		- Descriptive statistics	trace and interpret the					
		- Inferential Statistics	- Selecting a second dataset,					
		Interpreting data and drawing inferences	interpret the correlation					
		- Processing Operations	causality					
		- Measures of Central Tendency, of	Conduct statistical inference					
		Dispersion, of Asymmetry, of Relationship	on either of the two dataset					
		- Association in Case of Attributes						
		Learning objectives:						
		- Be able to interpret correctly the description	ptive statistics associated with					
		Open Dataset Be able to draw valid conclusions on the dataset analytics						
		- Be able to draw valid conclusions on the dataset analytics						

	Lecture Topic	Lecture Detail	Practices (examples)		
9.	Data Interpretation and Hypothesis Testing	Meaning of Interpretation Technique of Interpretation Precaution in Interpretation Testing of Hypotheses-I Chi-square Test Testing of Hypotheses-II	 Example exercises: Randomly select any Open Dataset and formulate an analysis of statistical features Formulate a hypothesis and make an analysis towards proving or dismantling it. 		
		 Learning objectives: Analyse an Open Data collection Use the right paths to interpret the data 	and perform hypothesis testing		
10.	Multivariate Analysis Techniques based on Data Provenance	Definitions for Data Validation and Data Provenance; Application of Internal Validity; Application of External Validity.	 Example exercises: Questions regarding the definitions and the concepts. Choose and apply the internal or/and external validity 		
		Learning objectives: 1. Understand the analysis techniques and 2. Become familiar with the Internal Valie	l who are they applied on data. dity and External Validity.		
11.	Ethical Considerations in OS Research	Concepts of ethics, morality and academic integrity; The ways of applying the ethical consideration in research	 Example exercises: Problems of the research methodology Problems of academic integrity, morality and ethics 		
		 Learning objectives: Understand and apply the ethical consideration. Understand the importance of the ethics on research 	derations. s and academic integrity impact		
12.	OA Disseminating Research Results and Distilling Principles of	Plan for disseminating process Set-up a project management and validate the methodology Report the research by publications	 Example exercises: Create a plan for dissemination. Analyse the research methodology. 		

Lecture Topic	Lecture Detail	Practices (examples)
Research Design		- Create a text for
and Methodology		dissemination.
	Learning objectives:	
	1. Learn what major types of dissemination are made visible to the audience.	on are available how the results
	2. Learn the advantages Research Design	and Methodology.

1.5. Information provided to Students about the module

This module specification is published by each Master organizer institution in its internal repository of MSC programmes. In order to ensure that this information is consistently presented, this is viewed as the primary source of information and is linked to in all information systems, e.g. website links and Moodle, which is the preferred virtual learning environment. This is also the source of information for teaching staff.

This specification, where appropriate, is also used as the primary source of information for printed material. In this case, until the module is approved in the context of the programme, information is indicative.

1.6. Teaching & Learning Strategy

For all lectures materials will be presented to student, either in the form of registered Lecture sessions, or Powerpoint and PDF study materials. Where needs, students will be re-directed to appropriate external resources for Individual Studies. All these content materials will be uploaded in Moodle so that all students have access to all materials and be able to apply a self-study pacing progress. In addition, Forums for discussion will be available on Moodle for a direct dialog between Lecturer and students.

The students will be encouraged to apply a group-based study methodology, where they can present various topics to their colleagues or directly apply the learning materials into given micro-projects.

The lectures will be a mix of presentation and practical analysis conducted by learners. Learners will be assigned specific tasks related to lecture content so that they can drill into concepts by applying some tools such as data repository access, create and storage a pre-print, and many others.

The Moodle classes will be delivered in a lecture theatre, if possible, with learners possibly bringing their own devices (BYOD). For remote access of students from outside the institution, an alternative platform like Microsoft Teams will be used to allow them to participate in all lectures.

Each week learners will attend two hours of. Lectures will be a mix of presentation and practical analysis conducted by learners with the assistance of the lecturer and teaching assistants. Learners will be assigned specific tasks related to lecture content so that they can drill into concepts by applying some tools such as R for Open Data research analysis.

Learners will discover concepts of OS research methodologies using an introducing the research cycle and activities which describe some of the core concepts, principles, actors, and practices in Open Science, and how these fit within a broader research ecosystem. Learners will have full access to necessary resources (outlined below) to complete each task. Lecturers will have a high level of competency in each of the methods and concepts used.

Learners are encouraged to attend and participate in all classes, as each session is intended to build upon previous classes in a practical, non-intimidating, informative, and enjoyable way. Throughout the module, the foundations of OS research workflows are applied to real life data to form learning of the fundamental ideas and the most used OS tools, services, practice during performing research activities.

Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Project	Develop a complex Open Science analysis or solution.	LO3, LO4	50%	Ongoing
Proctored Written Test	The test will assess learners' knowledge and understanding of concepts pertaining to each OS topic as described in Section 1.4.	LO1, LO2	50%	Week 14

1.7. Assessment Strategy

Proctored Written Tests will vary from Open Book style tests to Closed Book.

1.8. Reading List & Other Resources

Recommended Book Reading

Kothari, C. R. (2004). *Research methodology: Methods and techniques*. New Age International.

Marczyk, G. R., DeMatteo, D., & Festinger, D. (2010). *Essentials of research design and methodology* (Vol. 2). John Wiley & Sons.

Hecker, S., Haklay, M., Bowser, A., Makuch, Z., Vogel, J., & Bonn, A. (2018). *Citizen science: innovation in open science, society and policy* (p. 580). UCL Press.

Kitchin, R. (2021). The Data Revolution: A critical analysis of big data, open data and data infrastructures. Sage.

Supplementary Reading

Safarov, I., Meijer, A., & Grimmelikhuijsen, S. (2017). Utilization of open government data: A systematic literature review of types, conditions, effects and users. *Information Polity*, 22(1), 1-24.

McKiernan, E. C., Bourne, P. E., Brown, C. T., Buck, S., Kenall, A., Lin, J., ... & Yarkoni, T. (2016). Point of view: How open science helps researchers succeed. *elife*, *5*, e16800.

Allen, C., & Mehler, D. M. (2019). Open science challenges, benefits and tips in early career and beyond. PLoS biology, 17(5), e3000246.

Easterbrook, S. M. (2014). Open code for open science?. Nature Geoscience, 7(11), 779-781.

National Academies of Sciences, Engineering, and Medicine. (2018). Open science by design: Realizing a vision for 21st century research.

Irwin, A. (2021). Risk, science and public communication: Third-order thinking about scientific culture. In *Routledge handbook of public communication of science and technology* (pp. 147-162). Routledge.