
Reproducible Science:
exercise

This module is part of the training
session “Train for trainers” within

project TrainRDM

National Institute of Research and Development in Informatics (ICI Bucharest)
University POLITEHNICA of Bucharest

This work is licensed under the Creative Commons Attribution 4.0 International License.
All images are public domain unless otherwise noted.

Thousand years ago – Experimental Science
Description of natural phenomena

Last few hundred years – Theoretical Science
Newton’s Laws, Maxwell’s Equations…

Last few decades – Computational Science - Simulation of complex phenomena

Today – Data-Intensive Science
Scientists overwhelmed with data sets

from many different sources
Data captured by instruments
Data generated by simulations
Data generated by sensor networks

e-Science and the Fourth Paradigm

2

2

2
.

3

4

a

cG

a

a
−=

e-Science is the set of tools and technologies
to support data federation and collaboration

•For analysis and data mining
•For data visualization and exploration

•For scholarly communication and
dissemination

(With thanks to Jim Gray)

http://es.rice.edu/ES/humsoc/Galileo/Images/Astro/Instruments/hevelius_telescope.gif

Data Science -
introduction

Part I

Data Science terms A dataset is a
table/spreadsheet
document with historical
information

If you want to understand
details about the weather,
the dataset will include the
historical information
about the weather in the
past few years.
Precipitation, Humidity,
Temperature, etc.

Sample snapshot of the
dataset

A variable is like a container that can be assigned a value.

Precipitation, Humidity, temperature etc are variables in the previous example.

Types of variables:

Independent variables are not influenced by any factors and impact the outcome variable. The outcome variable is ‘chances of rain’. Temperature,

Humidity, sunrise, sunset times are independent variables.

Dependent variables are influenced or dependent on the independent variable. For example – the chance of rain depends on the temperature,

humidity etc. Depending on the temperature, the chances of rain may increase or decrease.

Any variable with numerical value is considered as continuous. Temperature, humidity, and chances of rain are considered continuous variables.

Any variable with non-numerical value is considered as categorical. Weather is considered a categorical variable.

Descriptive data: Summarize the data or describe the data in a meaningful way to provide insights about the dataset. Below are

some of the key insights that can be provided to describe the data:

Highest and lowest temperature

Did increase in the temperature lower the chances of rain?

Effects of humidity on rain

Weather Vs. chances of rain

Data Science terms

Data Science Project

1. Importing the Dataset

We will learn how to import the data set and load it onto the Jupyter notebook

2. Reviewing the Dataset

We can review the dataset by looking at the first few rows of data. You can do that by

using the head function in python. It helps provide an idea about the data structure.

Jupyter Notebooks

Part II

*This tutorial is based on https://www.dataquest.io/blog/jupyter-notebook-tutorial/

A notebook integrates code and its output into a single document that combines

visualizations, narrative text, mathematical equations, and other rich media

It is a single document where you can run code, display the output, and also add explanations, formulas,

charts, and make your work more transparent, understandable, repeatable, and shareable.

Using Notebooks is now a major part of the data science workflow at companies

across the globe

A Notebook will speed up your workflow and make it easier to communicate and share your results.

Jupyter Notebook is an incredibly powerful tool for interactively developing and

presenting data science projects

As part of the open source Project Jupyter, Jupyter Notebooks are completely free.

You can download the software on its own, or as part of the Anaconda data science toolkit.

Jupyter Notebook

The easiest way for a beginner to get started with Jupyter Notebooks is by installing Anaconda.

Anaconda is the most widely used Python distribution for data science and comes pre-loaded with all
the most popular libraries and tools.

Some of the biggest Python libraries included in Anaconda include NumPy, pandas, and Matplotlib,
though the full 1000+ list is exhaustive.

Installing Jupyter Notebook

If you are a more advanced user with Python already installed
and prefer to manage your packages manually, you can just use
pip:

pip3 install jupyter

To get Anaconda, simply:
• Download the latest version of Anaconda for Python

3.8.
• Install Anaconda by following the instructions on the

download page and/or in the executable.

Exercise...

https://www.anaconda.com/distribution/
https://www.numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://docs.anaconda.com/anaconda/packages/pkg-docs
https://jupyter.org/install
https://jupyter.org/install
https://www.anaconda.com/products/individual

One can run Jupyter via the shortcut Anaconda adds to your start menu, or via ‘jupyter
notebook’, which will open a new tab in your default web browser:

This isn’t a notebook just yet, but don’t panic! There’s not much to it. This is the Notebook
Dashboard, specifically designed for managing your Jupyter Notebooks. Think of it as the
launchpad for exploring, editing and creating your notebooks.

Running Jupyter

Jupyter’s Notebooks and dashboard are web apps, and Jupyter starts up a

local Python server to serve these apps to your web browser, making it

essentially platform-independent and opening the door to easier sharing on

the web.

Browse to the folder in which you would like to create your first notebook,

click the “New” drop-down button in the top-right and select “Python 3”:

Your first Jupyter Notebook will open in new tab — each notebook uses its

own tab because you can open multiple notebooks simultaneously.

If you switch back to the dashboard, you will see the new

file Untitled.ipynb and you should see some green text that tells you your

notebook is running.

Jupyter Notebook

Exercise...

Each .ipynb file is one notebook

Each time you create a new notebook, a new .ipynb file will be created.

An .ipynb file is a text file that describes the contents of your notebook in a format

called JSON. Each cell and its contents, including image attachments that have

been converted into strings of text, is listed therein along with medatadata.

You can edit this yourself — if you know what you are doing! — by

selecting “Edit > Edit Notebook Metadata” from the menu bar in the

notebook. You can also view the contents of your notebook files by

selecting “Edit” from the controls on the dashboard

However, the key word there is can. In most cases, there’s no reason you

should ever need to edit your notebook metadata manually.

ipynb File

Notebook
terms

There are two Notebook terms that we
work with: cells and kernels

A kernel is a “computational engine”
that executes the code contained in a
notebook document.

A cell is a container for text to be
displayed in the notebook or code to
be executed by the notebook’s kernel.

Cells form the body of a notebook.

There are two main cell types :

A code cell contains code to be executed in the kernel.

When the code is run, the notebook displays the output below the code cell that generated it.

The first cell in a new notebook is always a code cell.

A Markdown cell contains text formatted using Markdown and displays its output in-place when the Markdown cell is run.

Let’s test it out with a classic hello world example:

Type print('Hello World!') into the cell and click the run button Notebook Run Button in the toolbar above or press Ctrl (or CMD) + Enter.

Cells

Exercise...

Cells

Notice the difference? When we run the cell, its output is displayed below and the label to its left will

have changed from In [] to In [1]

The “In” part of the label is simply short for “Input,” while the label number indicates when the cell was executed on the

kernel — in this case the cell was executed first.

Run the cell again and the label will change to In [2] because now the cell was the second to be run on the kernel.

The output of a code cell also forms part of the document

You can always tell the difference between code and Markdown cells because code cells have that label on the left

and Markdown cells do not.

From the menu bar, click Insert and select Insert Cell Below to create a new code cell underneath
your first and try out the following code to see what happens. Do you notice anything different?

This cell doesn’t produce any output, but it does take three seconds to execute. Notice how Jupyter
signifies when the cell is currently running by changing its label to In [*].

Cells

In general, the output of a cell comes from

any text data specifically printed during the

cell’s execution, as well as the value of the

last line in the cell, be it a lone variable, a

function call, or something else.

One thing you may have observed when running your cells is that their border turns blue, whereas it was green while you were editing.

In a Jupyter Notebook, there is always one “active” cell highlighted with a border whose color denotes its current mode:

Green outline — cell is in “edit mode”

Blue outline — cell is in “command mode”

Keyboard shortcuts are a very popular aspect of the Jupyter environment because they facilitate a speedy cell-based workflow. Many of

these are actions you can carry out on the active cell when it’s in command mode.

Scroll up and down your cells with your Up and Down keys.

Press A or B to insert a new cell above or below the active cell.

M will transform the active cell to a Markdown cell.

Y will set the active cell to a code cell.

D + D (D twice) will delete the active cell.

Z will undo cell deletion.

Hold Shift and press Up or Down to select multiple cells at once. With multiple cells selected, Shift + M will merge your selection.

Ctrl + Shift + -, in edit mode, will split the active cell at the cursor.

You can also click and Shift + Click in the margin to the left of your cells to select them.

Keyboard Shortcuts

Markdown is a lightweight, easy to learn markup language for formatting plain text

Its syntax has a one-to-one correspondence with HTML tags, so some prior knowledge here

would be helpful but is definitely not a prerequisite

Let’s cover the basics with a quick example:

Markdown

Exercise...

Behind every notebook runs a kernel

When you run a code cell, that code is executed within the kernel.

Any output is returned back to the cell to be displayed.

The kernel’s state persists over time and between cells — it pertains to the document as a whole and not individual cells.

For example, if you import libraries or declare variables in one cell, they will be available in another. Let’s try this

out to get a feel for it:

Kernels

You may have noticed that Jupyter gives you the option to change kernel, and in fact

there are many different options to choose from.

Back when you created a new notebook from the dashboard by selecting a Python version, you

were actually choosing which kernel to use.

There kernels for different versions of Python, and also for over 100

languages including Java, C, and even Fortran.

Data scientists may be particularly interested in the kernels for R and Julia, as well as

both imatlab and the Calysto MATLAB Kernel for Matlab.

The SoS kernel provides multi-language support within a single notebook.

Choosing a Kernel

Let’s dissect an
example

Part III

*This tutorial is based on https://www.dataquest.io/blog/jupyter-notebook-tutorial/

A little
example

It is time to look at how Jupyter
Noteboos are used in practice

We start with the Fortune 500
dataset that you received. Our goal
is to find out how the profits of the
largest companies in the US
changed historically.

Dropbox / exercise / example.ipynb

It’s common to start off with a code cell specifically for imports and setup, so that

if you choose to add or change anything, you can simply edit and re-run the cell

without causing any side-effects.

Setup

work with data

plot charts

visual charts

read data

We’ve loaded our data set df into the most-used pandas data structure, which is called

a DataFrame and basically looks like a table:

Work with data

Further exploring the data

Hmm, not float64?

Just as we suspected! Some of the values are strings, which
have been used to indicate missing data. Are there any other
values that have crept in?

Further exploring the data

That makes it easy to interpret, but what should we do?

It’s a small fraction of our data set, though not completely
inconsequential as it is still around 1.5%.
If rows containing N.A. are, roughly, uniformly distributed over
the years, the easiest solution would just be to remove them.
So let’s have a quick look at the distribution.

At a glance, we can see that the most invalid
values in a single year is fewer than 25, and as
there are 500 data points per year, removing
these values would account for less than 4% of
the data for the worst years. Indeed, other than a
surge around the 90s, most years have fewer
than half the missing values of the peak.

let’s say this is acceptable and go ahead and remove these
rows

Next, we address our goal and plot average profit by year.
We might as well plot the revenue as well, so first we can
define some variables and a method to reduce our code.

let’s plot!

Looking at the result

Wow, that looks like an exponential, but it’s got some huge
dips. They must correspond to the early 1990s recession and
the dot-com bubble. It’s pretty interesting to see that in the
data. But how come profits recovered to even higher levels
post each recession?

Maybe the revenues can tell us more...

Futher analysis

That adds another side to the story. Revenues were not as
badly hit — that’s some great accounting work from the
finance departments.

Let’s superimpose these plots with +/- their standard deviations...

Conclusion

The standard deviations are huge! Some Fortune 500 companies make billions while others lose

billions, and the risk has increased along with rising profits over the years.

Perhaps some companies perform better than others; are the profits of the top 10% more or less

volatile than the bottom 10%?

There are plenty of questions that we could look into next, and it’s easy to see how the flow of

working in a notebook can match one’s own thought process.

Jupyter - more

Part IV

Enabling Jupyter Notebook extensions

There are multiple ways to install contributed extensions. For this example, we will use pip.

Next, add the notebook extension style files to the Jupyter configuration files.

Then, you will enable the extensions you would like to use. The syntax for this

is jupyter nbextension enable followed by the path to the desired extension’s main file. For example, to

enable scratchpad, you would type the following:

When this is completed, the enabled extension should be visible in the extension list:

One can also verify the availability of the extension via its user interface in the notebook. For example,

spellchecker adds an ABC checkmark icon to the interface.

https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/install.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/scratchpad/README.html

Local installation on students’ or lab computers

The benefits of installation on student-owned computers include:

Once students have the software on their computers, they always have access to it; they can work anywhere, and they can use it for internships, jobs, and other non-school

activities.

It is easy for them to install additional packages later.

Students learn to install and set up Jupyter, and software in general, which is a skill they are likely to need.

The total computing power for the class scales with the number of students, as long as each student has enough CPU power and memory to support the intended applications.

You can adopt Jupyter without support or resources from your institution.

Students learn to use Jupyter on their preferred OS, e.g. Linux, Mac, or Windows, which means they are already familiar with the basic idioms of their OS.

Drawbacks include:

This approach is only possible if every student owns a computer with enough capacity.

Students with less powerful computers might be at an unfair disadvantage.

Although installation is generally easy, it still takes time. The time one spend at the beginning of a class can be worthwhile for a semester-long course that uses Jupyter

throughout, but it is a barrier to using Jupyter for a single module or one-off assignment in a course about something else.

Also, the amount of time spent debugging esoteric problems scales with the number of students: a class of 25 students is bound to have a few people with 32-bit processors,

incompatible libraries, out-of-date operating systems, over-zealous virus checkers, etc., and a class with 100 students will have four times as many. One work-around is to have

students work in pairs: the probability that more than half of the students cannot get it working is reduced.

Discrepancies in installed library versions can cause issues for students and may lead to different behaviors when students run code.

Getting your class going with Jupyter

Jupyter on lab computers

Using lab computers instead of student-owned computers has the benefits of uniformity and improved

equity. Each student will have exactly the same setup, and the instructions will work the same for

everyone. This reduces the amount of individual tech support required and guarantees that all

students have access to enough computational power.

However, this deployment has some disadvantages:

Depending on how much control you have of the computer lab, you might need institutional permission and

support.

Students might be limited to working on assignments only when they are on campus and when computer labs are

open, which might be an unfair disadvantage for non-resident students or those with full time jobs.

It might be difficult to install additional packages as the need arises, and students might not be allowed to install

packages they need for projects.

Getting your class going with Jupyter

Jupyter on remote servers

Even when Jupyter runs locally, it runs as a web application; that is, it runs in a

browser connected to a server. In a local installation, the browser and the server

run on the same machine. But it is also possible to run the server remotely.

In that case, students don’t have to install anything; they only have to run a browser and load a

URL.

There are several ways to run Jupyter on a remote server:

You can run Jupyter on a server owned by you or your institution.

You can run Jupyter in a temporary environment running in the cloud.

You can run Jupyter in a persistent environment running in the cloud.

Getting your class going with Jupyter

Running in a temporary environment in the cloud

The easiest option for running Jupyter in the cloud is to use a cloud service that provides temporary environments.

Some of these services are free of cost, and you can use them without installing anything.

These environments are well-suited for short examples in classes that do not use Jupyter extensively. Students

can open a notebook and start running with the push of a button.

However, there are some limitations to these services:

If your notebooks depend on particular packages, or particular versions of packages, it can be difficult to satisfy these requirements.

These services run notebooks in a temporary environment that disappears if it is left idle. So they might not be suitable for managing

student work.

Some of these services do not guarantee a level of service and may not be as reliable as you need for a class or workshop.

Getting your class going with Jupyter

Binder mybinder.org

Binder is an open-source service provided by Project Jupyter. It allows the owner of a set of notebooks residing in a public repository to pre-build an image in

the Binder service, and get a shareable link that any visitor can use to obtain a working instance of JupyterHub, pre-loaded with the notebooks in the

repository. The session is temporary (any changes the user makes will be deleted when closing the tab or window), but it’s fully interactive. Binder is currently
one of the favorite services for running one-off workshops or tutorials.

https://mybinder.org/

Running on servers you control

If you have access to a server or cluster with enough computing power to support your class—including CPU and

especially memory—you can provide a Jupyter as a service using JupyterHub.

JupyterHub is open-source software that provides a cloud-based Jupyter application for each user in a group.

Each user has their own account and home directory on the server. The Hub, JupyterHub’s central system,

allows authenticating users and starting individual Jupyter notebook servers. Programs that start notebook

servers can use a variety of technical solutions.

Once the Hub starts a user’s notebook server, the Jupyter Notebook running in the cloud behaves just like

Jupyter does when installed on an individual’s computer, but JupyterHub will be running notebooks and storing

files on a remote cloud computer. Students can download notebooks stored in the cloud to their local computer if

they wish to work with a local installation as well. Additionally, students can upload notebooks (and other files)

from their local computer to the cloud.

Getting your class going with Jupyter

Providing a JupyterHub service offers several benefits. First, students get up and running

immediately—they spend no time installing software. They navigate to a web URL, log in to

JupyterHub, and begin using Jupyter. This ability to quickly log in and begin computing is a powerful

way to get students to engage with the lesson, builds confidence, and avoids the sometimes-

stressful experience of installing software on the student’s computer.

However, running JupyterHub on your own server has drawbacks:

Getting started is not easy; most instructors would require (or at least benefit from) institutional support that may

not be available.

It can be difficult to scale: if the number of students increases, you might need more computing power. And the

load students generate can be uneven; for example, if everyone runs a computationally-intensive example at the

same time, your server might not be able to handle it.

This option can be expensive, unless you already have servers with sufficient power.

Getting your class going with Jupyter

Running Jupyter in the cloud

If you or your institution don’t own computing hardware with the power to support your class, you can run JupyterHub on virtual

servers provided by cloud services like AWS and Microsoft Azure.

Commercial offerings also exist to use Jupyter in the cloud, some of which provide free trials or a “freemium” pricing model. They

include:

CoCalc (https://cocalc.com) is an online computing environment that allows multiple users to edit a Jupyter notebook simultaneously. It also allows

the notebook user to cycle through the revision history of a notebook and provides a number of popular kernels by default. The service includes the

ability to share files with project collaborators

Gryd (https://gryd.us) is another subscription service with a free tier. It includes course-management features, like a way to create a course, invite

students, and deploy auto-graded assignments.

Kaggle Kernels (https://kaggle.com/kernels)

Microsoft Azure notebooks (https://notebooks.azure.com/)

Amazon Sagemaker (https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-prepare.html)

Google Colaboratory (https://colab.research.google.com/)

Getting your class going with Jupyter

https://cocalc.com/
https://gryd.us/
https://kaggle.com/kernels
https://notebooks.azure.com/
https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-prepare.html
https://colab.research.google.com/

Many instructors use a Learning Management System (LMS) to communicate with

students. These tools offer private file sharing and assignments that connect to the

students’ institutional computing accounts and they can be used to distribute and collect

notebooks as text files. However, most LMS tools are not yet notebook-aware, so they

don’t render notebooks or make it easy for instructors to comment on or grade them.

Web hosting

Notebooks can be publicly hosted on any website, so students can download the files by clicking on

a link. Most web-hosting software is not notebook-aware, but one can use nbviewer to share public

notebooks, rendered as a static web page.

Learning management systems

When people talk about sharing their notebooks, there are generally two paradigms they may be considering.

Most often, individuals share the end-result of their work, which means sharing non-interactive, pre-rendered versions of their

notebooks. However, it is also possible to collaborate on notebooks with the aid of version control systems such as Git or online

platforms like Google Colab.

Before You Share: A shared notebook will appear exactly in the state it was in when you export or save it, including the output of any

code cells. Therefore, to ensure that your notebook is share-ready, so to speak, there are a few steps you should take before sharing:

Click “Cell > All Output > Clear”

Click “Kernel > Restart & Run All”

Wait for your code cells to finish executing and check ran as expected

This will ensure your notebooks don’t contain intermediary output, have a stale state, and execute in order at the time of sharing.

Sharing Notebooks

GitHub has integrated support for rendering .ipynb files directly both in repositories and gists on its website.

Once you have a GitHub account, the easiest way to share a notebook on GitHub doesn’t actually require Git at all. Since 2008,

GitHub has provided its Gist service for hosting and sharing code snippets, which each get their own repository. To share a

notebook using Gists:

Sign in and navigate to gist.github.com.

Open your .ipynb file in a text editor, select all and copy the JSON inside.

Paste the notebook JSON into the gist.

Give your Gist a filename, remembering to add .iypnb or this will not work.

Click either “Create secret gist” or “Create public gist.”

If you created a public Gist, you will now be able to share its URL with anyone, and others will be able to fork and clone your

work.

Creating your own Git repository and sharing this on GitHub is beyond the scope of this tutorial, but GitHub provides plenty of

guides for you to get started on your own.

GitHub

If your students are using JupyterHub, you can place notebooks and any related files directly

into the students’ directories manually or via a script.

If nbgrader is available on your JupyterHub instance you can use it to collect and distribute

notebooks (whether or not you choose to use nbgrader’s assessment features).

This allows you to develop the notebooks and incrementally make them visible to the students for them to

“fetch”.

They can then edit the notebooks or create new ones in the directory created in their storage space, and

then publish their notebooks back to you for downloading, viewing, or assessing with the nbgrader tools (see

the next section for details on this tool).

JupyterHub

nbgrader is a tool for creating, handling, and automatically grading assignments based on Jupyter notebooks. It works as a Jupyter extension that

the course creator installs on their computer. nbgrader is a flexible project in the Jupyter ecosystem that allows the distribution and collection of

materials. As its name implies, it also can grade assignments; it can be used in a distributed manner where each student is running Jupyter on their
own computers, or in a centralized manner, for example, if the students each have an account on a JupyterHub installation.

The following is a strategy that works with current tools:

1. The instructor creates an assignment notebook using nbgrader, then distributes the assignment to students via an LMS.

2. Students complete the assignment and upload the solution to the LMS.

3. The instructor downloads the completed assignments as a zip file and extracts the students’ solutions in a Jupyter

environment.

4. Instructors and graders use nbgrader to grade the assignment and save the grades to a CSV file.

5. The CSV file is then uploaded to the LMS.

Using an LMS and nbgrader together

Many educators develop course-assessment activities as Jupyter notebooks. This includes exams, in-class activities, homework

assignments, and projects.

Simple ways to handle the assessment of a notebook-based submission: have students either print them out, email them, submit them as a standard

electronic document (say, into the LMS), or drop them into a shared folder. At that point, the instructor can mark and grade them in a traditional

manner, for example by writing comments on a printout or adding annotations to a PDF.

nbgrader allows code cells in a notebook to be marked to be auto-graded or manually graded. An instructor can then create an

assignment that can be completely auto-graded, requiring little work after the notebook has been created.

This makes grading much easier and scales well with large class sizes. However, creating such an auto-graded notebook in nbgrader can be quite

time-consuming.

Pedagogically, a completely auto-graded notebook may have serious downsides. For example, students learn better when they can

actively connect a topic to their own interests. One method of encouraging this is to have a “reflection” question on each submission.

Such a reflection question can encourage students to comment on the material in a personal way, but it cannot be auto-graded.

To address this, you can create manually graded cells for a portion of an assignment and provide written feedback to the student.

Some third-party notebook-based assessment solutions do exist. For example CoCalc, Vocareum, and Gryd provide a cloud notebook

platform that can also grade assessments similar to or using nbgrader. Berkeley uses DataHub for their large Data8 course.

Using an LMS and nbgrader together

https://jupyter4edu.github.io/jupyter-edu-book/www.cocalc.com
https://jupyter4edu.github.io/jupyter-edu-book/www.vocareum.com
https://gryd.us/

Data Science - more

Part V

Exploratory
data
analysis

Before building any model, it is essential
to understand the data set.

EDA (exploratory data analysis) is a
crucial step in building any successful
model.

The dataset used for this model is
straightforward. We are trying to predict
the weight of the individual based on
their height. So let us first see if there is
any correlation between height and
weight of the individual....

Run heatmap plot to check for correlation between
dependent and independent variables.

Heatmap is a two-dimensional visual representation of the
variables. It is considered one of the best visual graphical
representations when you want to show complex data. It is
comprised of square boxes, and the x-axis and y-axis represent
the variables. For correlation, each square box represents the
level of correlation between the variable on the X-axis Vs. variable
on the Y-axis. The annotations shown in each square box
represent the correlation value. If you look across the matrix, the
correlation value for weight and height is 0.92, which indicates that
these variables are highly correlated. Please note that if you look
diagonally, the values will always be one as you are just
comparing the variable with itself.

Dependent variable: Weight

Independent variable: Height

Regarding correlation:
Values closer to 1 show a high correlation, and values closer to 0
show the lowest correlation.

A positive correlation value shows that the variables are positively
correlated. For example, taller individuals usually weigh more.
A negative correlation value shows that the variables are
negatively correlated.

Descriptive statistics

This is our example

Plot a pair plot to visually represent the

positive/negative correlation between the

variables.

Based on the pair plot, the Height is

positively correlated to Weight of the

individual.

Now, let's build a model that will predict

the individual's weight based on height....

Descriptive statistics

We are first splitting the dataset into train and test data sets. We then build the model based on the train
data set and test it on the test dataset...

Create, Train and Test datasets

We are ready to build a simple linear regression

model.

We will be using existing python packages to build

the model.

Sklearn

Statsmodel

The equation for simple linear regression:

The Statsmodel library that we will be using for

building the linear regression model will fit a line for

our dataset. Let's input the intercept value using

the Statsmodel library.

Build a simple Linear Regression Model

Fit the regression line

R-squared value is 0.855. This
shows that 85.5% of the variance in
the weight can be explained by
height.
F statistic is pretty low, which
shows that the model fit is
statistically significant.
The coefficient for height is 7.7 and
P-value is close to 0. This shows
that the coefficient is statistically
significant.
Based on the summary, we can now
derive the linear regression equation
using intercept and slope.

Weight = -351.4621 + 7.7275 * height

Plot the regression line using the
equation:

Plotting

Go to https://opendata.swiss/en/dataset?keywords_en=precipitation and

download any open dataset

Analyse your data, try to do a data analysis

Produce a documented Jupyter Notebook to illustrate the thinking process for

your scientific work methodology

Exercise #1

https://opendata.swiss/en/dataset?keywords_en=precipitation

Building a Recommendation System with Beer Data

2nd day...

2nd example

* From https://www.r-bloggers.com/2019/08/building-a-recommendation-system-with-beer-data/

THANK YOU!

Follow us

A way to share educational notebooks, gain feedback on them and
receive credit for your work is to publish with the Journal of Open
Source Education. This is a peer-reviewed journal aimed at
educators developing Open Education Resources that use code to
teach. In addition to receiving a publication advertising your work,
the peer-review process will result in higher quality software, code,
and educational material.

https://twitter.com/trainrdm
https://www.linkedin.com/in/rdm-training-hub-a6959521a/
rdmtraininghub.eu/

	Slide 1: Reproducible Science: exercise This module is part of the training session “Train for trainers” within project TrainRDM
	Slide 2: e-Science and the Fourth Paradigm
	Slide 3: Data Science - introduction
	Slide 4: Data Science terms
	Slide 5: Data Science terms
	Slide 6: Data Science Project
	Slide 7: Jupyter Notebooks
	Slide 8: Jupyter Notebook
	Slide 9: Installing Jupyter Notebook
	Slide 10: Running Jupyter
	Slide 11: Jupyter Notebook
	Slide 12: ipynb File
	Slide 13: Notebook terms
	Slide 14: Cells
	Slide 15: Cells
	Slide 16: Cells
	Slide 17: Keyboard Shortcuts
	Slide 18: Markdown
	Slide 19: Kernels
	Slide 20: Choosing a Kernel
	Slide 21: Let’s dissect an example
	Slide 22: A little example
	Slide 23: Setup
	Slide 24: Work with data
	Slide 25: Further exploring the data
	Slide 26: Further exploring the data
	Slide 27
	Slide 28: Looking at the result
	Slide 29: Futher analysis
	Slide 30
	Slide 31: Conclusion
	Slide 32: Jupyter - more
	Slide 33: Enabling Jupyter Notebook extensions
	Slide 34: Getting your class going with Jupyter
	Slide 35: Getting your class going with Jupyter
	Slide 36: Getting your class going with Jupyter
	Slide 37: Getting your class going with Jupyter
	Slide 38: Getting your class going with Jupyter
	Slide 39: Getting your class going with Jupyter
	Slide 40: Getting your class going with Jupyter
	Slide 41: Learning management systems
	Slide 42: Sharing Notebooks
	Slide 43: GitHub
	Slide 44: JupyterHub
	Slide 45: Using an LMS and nbgrader together
	Slide 46: Using an LMS and nbgrader together
	Slide 47: Data Science - more
	Slide 48: Exploratory data analysis
	Slide 49: Descriptive statistics
	Slide 50: This is our example
	Slide 51: Descriptive statistics
	Slide 52: Create, Train and Test datasets
	Slide 53: Build a simple Linear Regression Model
	Slide 54: Fit the regression line
	Slide 55: Plotting
	Slide 56: Exercise #1
	Slide 57: 2nd example
	Slide 58: THANK YOU!

