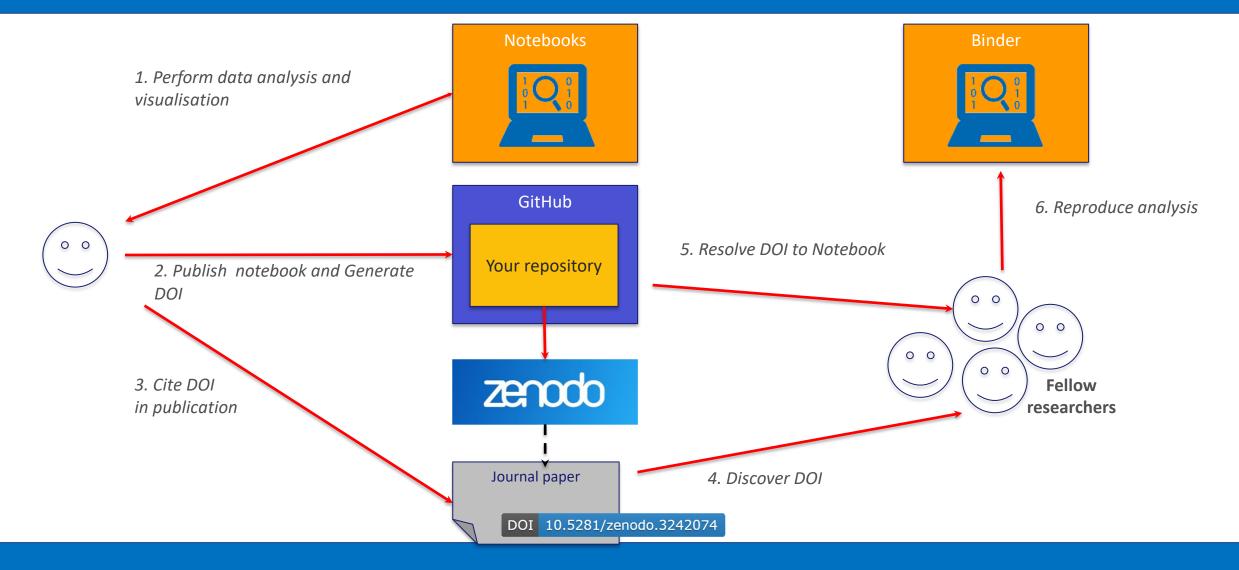

Reproducible Research and Data Analysis Exercise



University POLITEHNICA of Bucharest

Implement Open Science

1. Code storage and versioning

Git, GitHub, Sourcetree

Git

- *A free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency
- *Is easy to learn and has a tiny footprint with lightning fast performance
- → Has features like:
 - *cheap local branching
 - ★ convenient staging areas
 - multiple workflows

Git

Branching and and Merging

Small and Fast

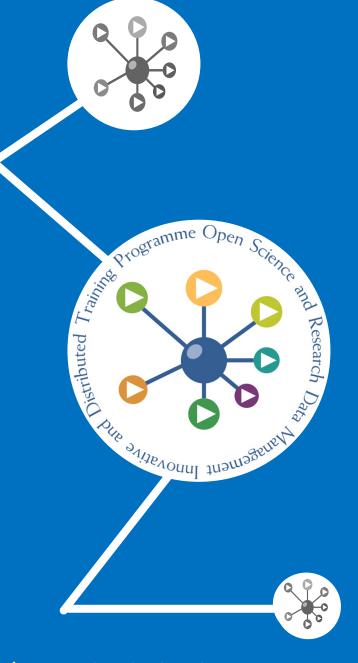
Distributed

Data Staging Open Assurance

Area

Free and Open Source

Git development platforms


- Social networks for software development
 - Git repository hosting services + extra features
 - web-based interfaces on top of Git
 - collaboration features: access control, wikis, issues, projects, etc.

Examples:

- GitHub
- GitLab
- Bitbucket
- Perforce
- Beanstalk
- Codebase
- etc.

2. Reproducible environments

Binder, Jupyter Notebooks

^{*}This tutorial is based on https://the-turing-way.netlify.app/communication/binder/zero-to-binder.html

Binderize your repo

- ★Create a new repo on GitHub
- *Make sure the repository is public, not private!
- *Create a file called *hello.py* containing print("Hello from Binder!")
- ☆Go to https://mybinder.org
- *Type the URL of your repo into the "GitHub repo or URL" box
- *As you type, the webpage generates a link in the "Copy the URL below..." box
- ♣Open a new browser tab and visit that URL

Binderize your repo

₩While you wait, BinderHub is:

- ★fetching your repo from GitHub
- *analysing the contents
- ★building a Docker image based on your report
- ¥launching that Docker image in the cloud
- ☆ connecting you to it via your browser

*How to run your script:

- *from the launch panel, select "Terminal"
- ₩in the new terminal window, type python hello.py and press Enter

Add dependencies

- *Create a file called *requirements.txt* in your repo
- *Add a line that says numpy==1.14.5
- *Check the environment:
 - 🔆 from the launch panel, select "Python 3" from the Notebook section to open a new notebook
 - * type the following into a new cell:

```
import numpy
print(numpy. version )
numpy.random.randn()
```

- *** !Changes made inside the Binder are not propagated in the repo!**
- *You can also add the Binder badge to your repo 🔞 launch binder

Access external data

¾Small public files

*add them directly into your GitHub repository

★Medium public files

- ₩ from a few 10s MB up to a few hundred MB
- and a file called postBuild to your repo → a shell script executed as part of the image construction (only once when a new image is built)

★Large public files

- ☀ it is not practical to place large files in your GitHub repo or include them directly in the image
- * the best option is to use a library specific to the data format to stream the data as you're using it or to download it on demand as part of your code

♣ Private files

* there is no way to access files which are not public

Access external data

- ☆Go to your GitHub repo and create a file called postBuild
- *Add this line: wget -q -O gapminder.csv http://bit.ly/2uh4s3g
- ₩Update the requirements.txt file by adding pandas and matplotlib
- ★ Relaunch your Binder
- *Visualise the data by creating a new notebook and running the following:

```
%matplotlib inline
import pandas

data = pandas.read_csv("gapminder.csv", index_col="country")

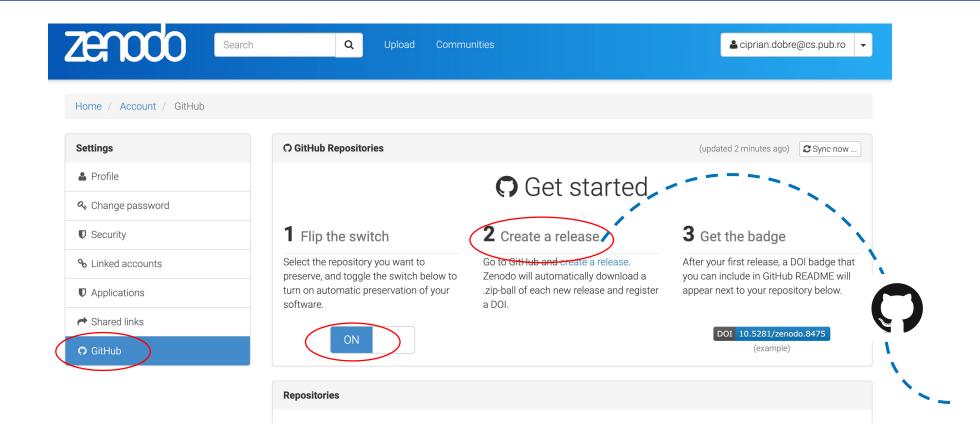
years = data.columns.str.strip("gdpPercap_")  # Extract year from last 4 characters of each column name data.columns = years.astype(int)  # Convert year values to integers, saving results back to dataframe data.loc["Australia"].plot()
```

Sample Binder repos

*https://github.com/raduciobanu/trainrdm-example

*https://mybinder.readthedocs.io/en/latest/examples/sample repos.html

3. Archiving code and software


Zenodo

Publish GitHub repo in Zenodo

4. Reproducible research after data analysis

Overleaf, Gnuplot

Performing reproducible research

***!Reminder from Monday!**

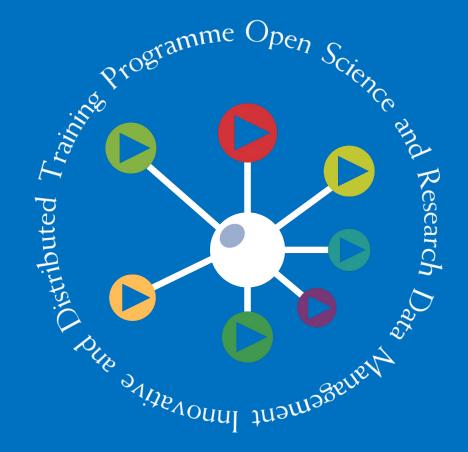
- *After data analysis
 - **¥** generate figures and tables directly from code
 - *automate data pre-processing, analysis and manuscript generation as "one-button" processes
 - ***** increase access to publications by posting preprints
 - *use data and code repositories for sharing (instead of personal websites)
 - ☆ create research compendiums → archives of data, code, software and products from a research project

Performing reproducible research

***Overleaf**

- *collaborative cloud-based LaTeX editor used for writing, editing and publishing scientific documents
- ★https://www.overleaf.com

¾Gnuplot


- *portable command-line driven graphing utility
- *http://www.gnuplot.info
- *Directly generate Gnuplot charts in Overleaf using the *gnuplottex* package

THANK YOU!

Follow us

